237
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Statistical symmetries and its impact on new decay modes and integral invariants of decaying turbulence

&
Pages 4-22 | Received 05 Sep 2012, Accepted 10 Dec 2012, Published online: 10 Apr 2013
 

Abstract

Classical decay laws of isotropic turbulence usually derived from the von Kármán–Howarth equation are essentially based on two paradigms. First, scaling symmetries of space and time, both tracing back to the Navier–Stokes equations in the limit of large Reynolds numbers (or r≫η), give rise to a temporal power-law decay for the turbulent kinetic energy and at the same time an algebraic growth of the integral length scale at an exponent that is uniquely coupled to the latter energy decay. Second, global invariants such as Birkhoff or Loitsianskii integrals determine the exponent of both power laws. We presently show that this class of decay laws may be considerably extended considering the entire set of multi-point correlation equations that admit a much wider class of symmetries. It was recently shown that these new symmetries are of paramount importance, e.g. in deriving the logarithmic law of the wall being an analytic solution of the multi-point equations. For the present case, it is particularly an additional scaling group, which we call statistical scaling group, that gives rise to two additional families of ‘canonical’ decay laws including those with an exponential characteristic for both the kinetic energy and the integral length scale. Finally, a second rather generic group admitted by all linear differential equations corresponding to the superposition principle induces an infinite set of scaling laws of rather complex form that may match rather generic initial conditions. All scaling laws are analyzed in the light of the above-mentioned integral invariants that have been further extended in the present contribution to an exponential-type invariant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.