167
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

An experimental investigation on mixing enhancements in non-circular sharp-edged nozzles using the entropy production concept

&
Pages 411-428 | Received 04 Dec 2013, Accepted 10 Mar 2014, Published online: 06 May 2014
 

Abstract

An experimental study on mixing enhancement in free jets, issuing from sharp-edged nozzles of different geometry, is performed by using particle image velocimetry. The attention is focused on the jet near-field and interaction zones (0 < X/D < 18, where X is the axial coordinate and D the diameter of the equivalent circular jet). The mixing efficiency is evaluated and quantified using the definition of entropy production derived from the velocity field. The effect of Reynolds number is also discussed by performing measurements at Re = 8000 and Re = 35,000. The results are compared to circular nozzle data to evaluate the change in mixing efficiency among axisymmetric and non-symmetric nozzles. While the effect of Reynolds number on mixing is small, at least for the values tested here, the change in geometry is rather crucial. In terms of entropy production, the rectangular and elliptical nozzles show higher mixing for X/D< 7, whereas the other ones attain the best results for larger distances. This behaviour is basically related to the axis-switching phenomenon observed in elongated jets. Different variables are tested and compared as possible velocity and length scales to derive a meaningful non-dimensional entropy production.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.