806
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces

&
Pages 75-93 | Received 09 Mar 2015, Accepted 30 Aug 2015, Published online: 19 Oct 2015
 

ABSTRACT

The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling–recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.

Acknowledgements

The authors wish to thank R. Mittal and J. Sadique for generous help and fruitful discussions. Simulations were performed using the DoD system.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors wish to thank the Office of Naval Research [grant number N00014-12-1-0582, Dr. R. Joslin, program director] for financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.