851
Views
25
CrossRef citations to date
0
Altmetric
Articles

Evaluating the modulated gradient model in large eddy simulation of channel flow with OpenFOAM

, ORCID Icon &
Pages 600-620 | Received 16 Mar 2018, Accepted 24 May 2018, Published online: 11 Jun 2018
 

ABSTRACT

Recently, a new family of subgrid-scale (SGS) models, termed as gradient-based models, has been introduced to calculate the SGS stresses in large eddy simulation (LES). In the present work, the modulated gradient model (MGM) was implemented in the OpenFOAM package, and the pimpleFoam solver was improved to be adopted with non-eddy viscosity models. The MGM is a new, nonlinear model that uses the local equilibrium hypothesis to assess the SGS kinetic energy and the velocity gradient tensor to calculate the relative weight of the different components of the SGS stress tensor. To evaluate the accuracy of the MGM along with the modified pimpleFoam solver, a turbulent channel flow was simulated at the three different frictional Reynolds numbers of 180, 395 and 590. Furthermore, the results were compared with direct numerical simulation data, as well as the numerical results obtained by the established SGS models such as the dynamic Smagorinsky model (DSM). A suitable accuracy for the first- and second-order turbulence parameters was reported. Moreover, it was demonstrated that MGM is computationally efficient compared to the DSM in treating channel flow.

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.