361
Views
9
CrossRef citations to date
0
Altmetric
Articles

Length scales in turbulent free shear flows

ORCID Icon, ORCID Icon &
Pages 243-257 | Received 09 Jan 2020, Accepted 20 Mar 2020, Published online: 15 Apr 2020
 

ABSTRACT

We address the important point of the proportionality between the longitudinal integral lengthscale (L) and the characteristic mean flow width (δ) using experimental data of an axisymmetric wake and a turbulent planar jet. This is a fundamental hypothesis when deriving the self-similar scaling laws in free shear flow. We show that L/δ is indeed constant, at least in a range of streamwise distances between 15 and 50 times the characteristic inlet dimension. We revisit turbulence closure models such as the Prandtl mixing length and the eddy viscosity in the light of the non-equilibrium dissipation scaling. We show that the mixing length model does not comply with the scalings stemming from the non-equilibrium version of the theory even if it does comply with the theory’s equilibrium version. Similarly, the eddy viscosity model holds in the case of the non-equilibrium version of the theory provided that the eddy viscosity is constant everywhere. We conclude by comparing the results of the different models with each other and with experimental data and with an improved model (following Townsend) that corrects for the eddy viscosity by considering the intermittency of the flow.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

GC and JCV were supported by ERC Advanced Grant 320560 awarded to JCV.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.