180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simplified model for drag evaluation of a streamlined body with leading-edge damage

, , &
Pages 656-679 | Received 09 Feb 2021, Accepted 11 Aug 2021, Published online: 11 Sep 2021
 

Abstract

A reduced-order model (ROM) is proposed for efficient drag prediction on a streamlined body with surface imperfections that emulate leading-edge roughness or erosion-induced damage. Surface imperfections are idealised as forward-facing step(s) for which the chordwise position, spanwise length, and distribution of steps are varied. It is hypothesised that superposed a bilinear dependencies on the chordwise location and spanwise length of individual steps comprising the damage provide for reasonable ROM predictions of the corresponding change in total drag on the streamlined body. Direct numerical simulations are applied to test the ROM hypotheses and to study interactions between the three-dimensional steps and the separated near-wall turbulent flow fields, justifying the underlying terms and form of the ROM. Insights into the flow physics influencing both form and friction contributions to total drag are revealed, and satisfactory model performance is demonstrated for complex damage idealisations that emulate fracture of laminated wind turbine blades.

Acknowledgments

The University of Texas at Dallas' Cyberinfrastructure & Research Services Department and the Texas Advanced Computing Center are acknowledged for providing advanced computational resources.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.