344
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hydrodynamics of flow through a degraded channel bed

, , &
Pages 814-842 | Received 01 Sep 2021, Accepted 11 Nov 2021, Published online: 03 Dec 2021
 

Abstract

This article presents experimental results of turbulent flow measured in a bimodal degraded channel bed consisting of sand-gravel mixture. Sand and gravel of uniform sizes 0.25 and 3.5 mm were mixed in the same proportions (by weight) to create a bimodal sedimentary bed. A three-dimensional Vectrino velocimeter was employed to collect three-dimensional velocities over bimodal degraded bed under equilibrium condition. The streamwise velocity, Reynolds stresses, turbulent kinetic energy (TKE), and TKE fluxes profiles were compared with the literature. However, the advancement of the existing knowledge was done by exploring the laws of turbulence. To this end, the velocity structure function method was applied. Second and third-order streamwise velocity structure functions followed by mixed third-order velocity structure functions revealed the existence of inertial subrange. The TKE dissipation rate was estimated using Kolmogorov’s and Monin–Yaglom’s scaling laws of turbulence. The anisotropy analysis indicated anisotropic turbulence in the near-bed, whereas above the initial bed-level, the anisotropy tends to follow three-dimensional isotropy. The present study notably enhances the understanding of turbulent flow through a degraded bed by demonstrating the legitimacy of laws of turbulence at different locations over the bed and providing a comprehensible acquaintance in TKE budget and Reynolds stress anisotropy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.