387
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Drag reduction using velocity control in Taylor–Couette flows

ORCID Icon, ORCID Icon & ORCID Icon
Pages 467-491 | Received 09 Feb 2022, Accepted 29 Jul 2022, Published online: 06 Aug 2022
 

Abstract

Direct numerical simulation of Taylor–Couette flow subject to opposition control is investigated at Reynolds number (Re) of 3000. The idea is to impose exact opposite velocities of the detection plane at the walls to counteract near-wall stream-wise vortices. In this study, various velocity control strategies, namely wall-normal, axial, combined and blowing only, have been investigated from the viewpoint of skin-friction drag reduction. Further, the effects of skipping spatial points in azimuthal and axial directions and in time have been investigated from a drag reduction point of view. Based on the emergence of a virtual wall that hinders the vertical transport of momentum (i.e. on reduction of Reynolds shear stress production as well as sweep & ejection events), flow physics has been explained via statistical analysis of fluctuations, Reynolds shear stresses, and near-wall coherent structures. The spatial density of near-wall vortical structures shows a marked reduction, followed by quadrant contribution analysis of Reynolds shear stresses reveals a decrease in ejection and sweep events, leading to reduced production of Reynolds shear stresses and skin-friction drag.

Acknowledgments

The authors would like to thank the High Performance Computing facility (PADUM) at Indian Institute of Technology (IIT) Delhi.

Disclosure statement

The authors report there are no competing interests to declare

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.