105
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Multi-network evolutionary systems and automatic decomposition of complex problems

, &
Pages 259-274 | Received 20 Dec 2005, Published online: 26 Jan 2007
 

Abstract

Multi-network systems, i.e. multiple neural network systems, can often solve complex problems more effectively than their monolithic counterparts. Modular neural networks (MNNs) tackle a complex problem by decomposing it into simpler subproblems and then solving them. Unlike the decomposition in MNNs, a neural network ensemble usually includes redundant component nets and is often inspired by statistical theories. This paper presents different types of problem decompositions and discusses the suitability of various multi-network systems for different decompositions. A classification of various multi-network systems, in the context of problem decomposition, is obtained by exploiting these differences. Then a specific type of problem decomposition, which gives no information about the subproblems and is often ignored in literature, is discussed in detail and a novel MNN architecture for problem decomposition is presented. Finally, a co-evolutionary model is presented, which is used to design and optimize such MNNs with subtask specific modules. The model consists of two populations. The first population consists of a pool of modules and the second population synthesizes complete systems by drawing elements from the pool of modules. Modules represent a part of the solution, which co-operate with each other to form a complete solution. Using two artificial supervised learning tasks, constructed from smaller subtasks, it can be shown that if a particular task decomposition is better than others, in terms of performance on the overall task, it can be evolved using the co-evolutionary model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.