437
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

An analytic approximation of the likelihood function for the Heston model volatility estimation problem

&
Pages 289-296 | Received 25 Aug 2006, Accepted 08 Jan 2008, Published online: 15 Apr 2009
 

Abstract

Estimating the volatility from the underlying asset price history for the discrete observations case is a challenging inference problem. Yet it has attracted much research interest due to the key role of volatility in many areas of finance. In this paper we consider the Heston stochastic volatility model and propose an accurate analytic approximation for the volatility likelihood function. The model is based on considering the joint probability density of the asset and the volatility, and integrating out past volatility variables. The likelihood simplifies to a product of T terms, where T is the length of the past history considered. An extension to the problem of fixed parameter estimation is also presented. Simulation results indicate the effectiveness and accuracy of the proposed method.

Notes

†Note that the domain of convergence of the series cannot be easily specified because the functional form of Lt (vt ) is not explicitly available.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.