208
Views
5
CrossRef citations to date
0
Altmetric
Research Papers

Random matrix models for datasets with fixed time horizons

ORCID Icon
Pages 769-781 | Received 15 Jan 2019, Accepted 27 Dec 2019, Published online: 22 Jan 2020
 

Abstract

This paper examines the use of random matrix theory as it has been applied to model large financial datasets, especially for the purpose of estimating the bias inherent in Mean-Variance portfolio allocation when a sample covariance matrix is substituted for the true underlying covariance. Such problems were observed and modeled in the seminal work of Laloux et al. [Noise dressing of financial correlation matrices. Phys. Rev. Lett., 1999, 83, 1467] and rigorously proved by Bai et al. [Enhancement of the applicability of Markowitz's portfolio optimization by utilizing random matrix theory. Math. Finance, 2009, 19, 639–667] under minimal assumptions. If the returns on assets to be held in the portfolio are assumed independent and stationary, then these results are universal in that they do not depend on the precise distribution of returns. This universality has been somewhat misrepresented in the literature, however, as asymptotic results require that an arbitrarily long time horizon be available before such predictions necessarily become accurate. In order to reconcile these models with the highly non-Gaussian returns observed in real financial data, a new ensemble of random rectangular matrices is introduced, modeled on the observations of independent Lévy processes over a fixed time horizon.

JEL Classification:

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.