284
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of Fatty Acid Amidohydrolase, the Enzyme Responsible for the Metabolism of the Endocannabinoid Anandamide, by Analogues of Arachidonoyl-serotonin

, , , , &
Pages 225-231 | Published online: 19 Jun 2013
 

Abstract

Arachidonoyl-serotonin inhibits in a mixed-type manner the metabolism of the endocannabinoid anandamide by the enzyme fatty acid amidohydrolase. In the present study, compounds related to arachidonoyl-serotonin have been synthesised and investigated for their ability to inhibit anandamide hydrolysis by this enzyme in rat brain homogenates. Removal of the 5-hydroxy from the serotonin head group of arachidonoyl-serotonin produced a compound (N-arachidonoyltryptamine) that was a 2.3-fold weaker inhibitor of anandamide hydrolysis, but which also produced its inhibition by a mixed-type manner (Ki(slope) 1.3 µM; Ki(intercept) 44 µM). Replacement of the amide linkage in this compound by an ester group further reduced the potency. In contrast, replacement of the arachidonoyl side chain by a linolenoyl side chain did not affect the observed potency. N-(Fur-3-ylmethyl) arachidonamide (UCM707), N-(fur-3-ylmethyl)linolenamide and N-(fur-3-ylmethyl)oleamide inhibited anandamide hydrolysis with pI50 values of 4.53, 5.36 and 5.25, respectively. The linolenamide derivative was also found to be a mixed-type inhibitor. It is concluded that the 5-hydroxy group of arachidonoyl-serotonin contributes to, but is not essential for, inhibitory potency at fatty acid amidohydrolase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.