293
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Molecular mechanics PBSA ligand binding energy and interaction of Efavirenz derivatives with HIV-1 reverse transcriptase

, &
Pages 129-134 | Received 26 Jun 2004, Accepted 04 Oct 2004, Published online: 03 Oct 2008
 

Abstract

In order to evaluate the properties of several HIV-1 reverse transcripase(RT) inhibitors, Efavirenz (SUSTIVA®) and a set of its derivatives (benzoxazinones) have been placed into the nonnucleoside analogue binding site of the enzyme by molecular docking. The resulting geometries were used for a molecular dynamics simulation and binding energy calculations. The enzyme-inhibitor binding energies were estimated from experimental inhibitory activities (IC90). The correlation of the predicted and experimental binding energies were satisfactory acceptable as indicated by r2=0.865. Based on MD simulations, the obtained results indicate that the tight association of the ligand to the HIV-1 RT binding pocket was based on hydrogen bonding between Efavirenz's N1 and the oxygen of the backbone of Lys 101, with an estimated average distance of 1.88 Å. Moreover, electrostatic interaction was mainly contributed by two amino acid residues in the binding site; Lys 101 and His 235. MD simulations open the possibility to study the reaction of the flexible enzyme to those substances as well as the overall affinity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.