1,079
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of recombinant human fatty aldehyde dehydrogenase: Implications for Sjögren-Larsson syndrome

, , , , &
Pages 584-590 | Received 12 Jan 2007, Accepted 23 Feb 2007, Published online: 04 Oct 2008
 

Abstract

Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in Sjögren-Larsson syndrome, a neurological disorder resulting in physical and mental handicaps. Microsomal FALDH was expressed in E. coli and purified. Using an in vitro activity assay an optimum pH of ∼9.5 and temperature of ∼35°C were determined. Medium- and long-chain fatty aldehydes were converted to the corresponding acids and kinetic parameters determined. The enzyme showed high activity with heptanal, tetradecanal, hexadecanal and octadecanal with lower activities for the other tested substrates. The enzyme was also able to convert some fatty alcohol substrates to their corresponding aldehydes and acids, at 25–30% the rate of aldehyde oxidation. A structural model of FALDH has been constructed, and catalytically important residues have been proposed to be involved in alcohol and aldehyde oxidation: Gln-120, Glu-207, Cys-241, Phe-333, Tyr-410 and His-411. These results place FALDH in a central role in the fatty alcohol/acid interconversion cycle, and provide a direct link between enzyme inactivation and disease pathology caused by accumulation of alcohols.

Acknowledgements

We thank Professor C. J. Schofield and Dr. D. Butler (University of Oxford) for helpful discussions. This work was funded by a University of Bath Departmental studentship for KDEB and by E.U. grant Refsum's Disease: Diagnosis, Pathology & Treatment (QLG3-CT-2002-00696) to MDL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.