433
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Computational neural network analysis of the affinity of N-n-alkylnicotinium salts for the α4β2* nicotinic acetylcholine receptor

, , , , &
Pages 157-168 | Received 31 Aug 2007, Accepted 14 Dec 2007, Published online: 20 Oct 2008
 

Abstract

Based on an 85 molecule database, linear regression with different size datasets and an artificial neural network approach have been used to build mathematical relationships to fit experimentally obtained affinity values (Ki) of a series of mono- and bis-quaternary ammonium salts from [3H]nicotine binding assays using rat striatal membrane preparations. The fitted results were then used to analyze the pattern among the experimental Ki values of a set of N-n-alkylnicotinium analogs with increasing n-alkyl chain length from 1 to 20 carbons. The affinity of these N-n-alkylnicotinium compounds was shown to parabolically vary with increasing numbers of carbon atoms in the n-alkyl chain, with a local minimum for the C4 (n-butyl) analogue. A decrease in Ki value between C12 and C13 was also observed. The statistical results for the best neural network fit of the 85 experimental Ki values are r2 = 0.84, rmsd = 0.39; rcv2 = 0.68, and loormsd = 0.56. The generated neural network model with the 85 molecule training set may also be of value for future predictions of Ki values for new virtual compounds, which can then be identified, subsequently synthesized, and tested experimentally.

Acknowledgement

This work was supported by NIH grant U19DA017548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.