224
Views
4
CrossRef citations to date
0
Altmetric
Perspective

Applying lessons from human papillomavirus vaccines to the development of vaccines against Chlamydia trachomatis

, &
Pages 959-966 | Received 01 May 2018, Accepted 08 Oct 2018, Published online: 20 Oct 2018
 

ABSTRACT

Introduction: Chlamydia trachomatis (Ct), the most common bacterial sexually transmitted infection (STI), leads to pelvic inflammatory disease, infertility, and ectopic pregnancy in women. In this Perspective, we discuss the successful human papillomavirus (HPV) vaccine as a case study to inform Ct vaccine efforts.

Areas covered: The immunological basis of HPV vaccine-elicited protection is high-titer, long-lasting antibody responses in the genital tract which provides sterilizing immunity. These antibodies are elicited through parenteral administration of a subunit vaccine based on virus-like particles (VLPs) of HPV. We present three lessons learned from the successful HPV vaccine efforts: (1) antibodies alone can be sufficient to provide protection from STIs in the genital tract, (2) the successful generation of high antibody levels is due to the multivalent structure of HPV VLPs, (3) major challenges exist in designing vaccines that elicit appropriate effector T cells in the genital tract. We then discuss the possibility of antibody-based immunity for Ct.

Expert commentary: In this Perspective, we present a case for developing antibody-eliciting vaccines, similar to the HPV vaccine, for Ct. Basic research into the mechanisms of Ct entry into host cells will reveal new vaccine targets, which may be antigens against which antibodies are not normally elicited during natural infection.

Declaration of interest

B Chackerian is a co-founder and holds equity in Agilvax, Inc. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reviewer disclosures

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

Additional information

Funding

This work was funded by the National Institutes of Health, National Center for Advancing Translational Sciences [grant numbers KL2TR001448, UL1 TR001449] and the National Institutes of Health, National Institute of Allergy and Infectious Diseases [grant number U19 AI113187].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.