193
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Intra-cycle analysis of muscle vibration during cycling

ORCID Icon, , , ORCID Icon, & ORCID Icon
Pages 554-566 | Received 13 Sep 2021, Accepted 23 May 2022, Published online: 06 Jun 2022
 

ABSTRACT

Cyclists are exposed for a long period to continuous vibrations. When a muscle is exposed to vibration, its efficiency decreases, the onset of fatigue occurs sooner, and the comfort of the cyclist is reduced. This study characterised the vastus lateralis (VL) soft tissue vibrations for different input frequencies and different pedalling phases. Ten cyclists were recruited to pedal at 55, 70, 85, and 100 rpm on a vibrating cycle ergometer that induced vibrations at frequencies ranging from 14.4 Hz (55 rpm) to 26.3 Hz (100 rpm). The VL vibration amplitude was quantified with a continuous wavelet transform and expressed as a function of the crank angle. The pedalling cycle was split into four phases (downstroke, backstroke, upstroke, and overstroke) to express the mean vibration amplitude and frequency of each phase. Statistical analysis depicted that VL vibration frequency increased with the pedalling cadence and that the VL was exposed to up to 50% more vibration amplitudes during the downstroke phase at a slow cadence. The increase in the pedal vibration frequency, a higher vibration transmission due to greater normal force on the pedal, and strong activation of the VL during the downstroke phase were discussed to explain these results.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/14763141.2022.2083010

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.