428
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Regulatory effect of miR-195 in the placental dysfunction of preeclampsia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 901-908 | Received 08 May 2018, Accepted 02 Aug 2018, Published online: 19 Sep 2018
 

Abstract

Purpose: Preeclampsia (PE) is a pregnancy specific disease soon after 20 weeks of gestation where major symptoms are hypertension and proteinuria. The underlying pathology is believed to be abnormal placentation. Epigenetic and genetic factors have significant roles in abnormal placental development. MicroRNA’s (miRNAs), being one of the most important epigenetic regulators, take part in abnormal placentation. Hsa-miR-195 is a molecule associated with abnormal placental growth mechanisms such as impaired cellular proliferation, inadequate trophoblastic invasion causing defective spiral artery remodeling, and apoptosis. We aimed to evaluate miRNA functions, namely miR-195 expression profile, in order to divulge PE pathogenesis.

Methods: In this study, we extracted circulating miRNAs from maternal plasma and placenta from 20 PE patients and 20 normotensive pregnant women. miR-195 was quantified using quantitative real time reverse transcriptase PCR (qRT-PCR). The target genes of miR-195 were predicted by Diana Tools-mirPath, TargetScan, and miRDB databases.

Results: We found that miR-195 levels were downregulated (3.83-fold decrease, p < .05) in preeclamptic placenta samples, however miR-195 were undetected in preeclamptic and normotensive plasma samples. The steep down-regulation of miR-195 points to its importance of PE pathogenesis.

Conclusion: miR-195 is suggested to regulate PE via its target genes manipulating biological processes such as placental proliferation, apoptosis, and angiogenesis. We propose that detection of decreased miR-195 levels in preeclamptic placentas could be used to enlighten the pathophysiology of PE.

Declaration of interest

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Scientific and Technological Research Council of Turkey under grant number 1919B011502536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.