Publication Cover
Natural Product Research
Formerly Natural Product Letters
Volume 37, 2023 - Issue 10
316
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and anticancer activity of novel Eugenol derivatives against breast cancer cells

ORCID Icon
Pages 1632-1640 | Received 27 Apr 2022, Accepted 10 Jul 2022, Published online: 25 Jul 2022
 

Abstract

Eugenol chemically known as 4-allyl-2-methoxyphenol is a major phenolic component of Syzigium aromaticum and associated with significant biological activities. In the present work, new eugenol 1,2,3-triazole derivatives have been synthesized, characterized using NMR, mass spectrometry, IR, and elemental analysis and screened for their anticancer activity against breast cancer cells. Compound 9, namely 3-(4-((4-allyl-2-methoxyphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N'-(4-methylbenzoyl) benzohydrazide was found to be the most potent candidate and better than eugenol in exhibiting cytotoxicity with IC50 6.91 and 3.15 μM, comparable to Doxorubicin with IC50 6.58 and 3.21 μM against MDA-MB-231 and MCF-7 cells, respectively. Furthermore, compound 9 treated MCF-7 cells as observed by propidium iodide staining significantly increased cell population of S phase and G2 phase to 43.64% and 35.19%, respectively therefore arresting cell cycle at G2 and S phase. These results indicate that eugenol linked 1,2,3-triazole ring could be used as anticancer leads for the treatment of this deadly diseases.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by the Deanship of Scientific Research (Project No. 116/1438), Al- Baha university, Al Baha, Kingdom of Saudi Arabia for funding the project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.