193
Views
80
CrossRef citations to date
0
Altmetric
Original Articles

Intrinsic nanoscale phase separation of bulk As2S3 glass

, &
Pages 2941-2953 | Published online: 15 Nov 2010
 

Raman scattering on bulk As x S1− x glasses shows that vibrational modes of As4S4 monomer first appear near x = 0.38, and their concentration increases precipitously with increasing x, suggesting that the stoichiometric glass (x = 0.40) is intrinsically phase separated into small As-rich (As4S4) and large S-rich clusters. Support for the Raman-active vibrational modes of the orpiment-like and realgar-like nanophases is provided by ab-initio density functional theory calculations on appropriate clusters. Nanoscale phase separation provides a basis for understanding the global maximum in the glass transition temperature T g near x = 0.40, and the departure from Arrhenius temperature activation of As2S3 melt viscosities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.