467
Views
51
CrossRef citations to date
0
Altmetric
Original Articles

Dislocation nucleation in the initial stage during nanoindentation

, , , &
Pages 3609-3622 | Received 17 Jun 2002, Accepted 27 May 2003, Published online: 12 May 2010
 

Abstract

The microstructure origin of the elastic–plastic response of a Cu substrate during nanoindentation is studied using molecular dynamics simulation. The elastic response is found to deviate from the Hertzian solution observed experimentally. The departure can be traced to the small tip radius used in the simulation. Further penetration sees the development of an inhomogeneous microstructure. Even at the same strain rate, different parts of the contact surface deform via different mechanisms: some elastically, some via the dislocation bow-out and some via the nucleation and growth of Shockley partials that sometimes interact to form stair-rod locks. The resultant effect produces the observed quasi-elastic behaviour on the load–displacement curve, characterized by interspersed minor yields. The present computer simulation shows in some detail the corresponding dislocation structure development. The stair-rod lock formation is found to provide a more satisfactory explanation to the experimentally observed time-delayed occurrence of pop-in below the spontaneous pop-in load.

Acknowledgement

The authors are grateful for funding support from the Hong Kong Research Grant Council PolyU5167/01E, PolyU5177/02E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.