34
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The stress-driven migration of point defects to a slowly moving crack

Pages 2455-2470 | Received 01 Jun 2003, Accepted 28 Feb 2004, Published online: 21 Feb 2007
 

Abstract

The migration kinetics of point defects near a slowly moving brittle crack are studied under the condition of pure drift. In the pure-drift approximation it is assumed that the point-defect flow in the vicinity of a crack tip is dominated by the elastic interaction between the stress field of the crack and a point defect and that concentration gradient effects can be neglected. While such a pure-drift approach has been shown to be useful to calculate the short-time diffusion kinetics of impurity-induced subcritical crack growth, previous applications are based on the drift solutions for a stationary crack. In the present paper, the first-order drift diffusion equation for a slowly moving crack at uniform velocity is solved. This yields the flow lines of the point defects and the impurity segregation rate directly in terms of the crack growth rate. The flow line patterns reveal important insights with respect to the point-defect migration kinetics near a steadily advancing crack. Although the calculation is entirely elastic, it is shown that the present drift model maintains some relevance also in the presence of a plastic zone ahead of the crack tip.

Acknowledgements

I would like to thank Professor John F. Knott for helpful suggestions and reading the manuscript, M. Koch for useful discussions, Dr E. Specht for the help to prepare the line figures and the Deutsche Forschungsgemeinschaft for support.

Notes

Additional information

Notes on contributors

Peter Streitenberger Footnote

Email: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.