106
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Adhesion properties of decagonal quasicrystals in ultrahigh vacuum

, , , , , & show all
Pages 945-950 | Received 23 Apr 2005, Accepted 28 Jun 2005, Published online: 19 Aug 2006
 

Abstract

The atomic scale adhesion properties of two high-symmetry surfaces of decagonal Al-Ni-Co quasicrystals have been investigated using atomic force microscopy (AFM) in ultrahigh vacuum. Imaging the surface allowed us to distinguish the plastic regime from the elastic (reversible) regime of tip-sample contact. The work of adhesion of the atomically clean quasicrystal surface in the plastic regime is smaller than that of single crystalline Pt(111) by a factor of 10, reflecting a lower surface energy for the quasicrystal surface. However, the adhesion force must be reduced even further, in order to make measurements outside of the plastic regime possible. We present a strategy for doing this that involves chemical modification of the surface or the tip, together with appropriate choice of mechanical contact parameters.

Acknowledgement

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy through the Ames Laboratory, Contract No. W-405-Eng-82, and through the Lawrence Berkeley National Laboratory, Contract No. DE-AC02-05CH11231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.