131
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Tracing locations of new coating material during spark anodizing of titanium

, , , , &
Pages 49-66 | Received 08 Jun 2005, Accepted 03 Aug 2005, Published online: 21 Feb 2007
 

Abstract

The growth of anodic coatings on titanium, under sparking conditions, is investigated in tracer experiments, using alkaline silicate and phosphate electrolytes. Coatings are formed sequentially in each electrolyte, with phosphorus and silicon located by energy-dispersive X-ray analysis and glow discharge optical emission spectroscopy. The coatings, containing anatase, rutile and amorphous oxide, with incorporated phosphorus and silicon species, are shown to grow by discrete thickening at sites of dielectric breakdown. New material is found near the metal, within the coating bulk and at the coating surface. Approximately 10–30% of the new material is located near to the coating surface and about 40–60% near to the metal. The findings are attributed to the formation of breakdown channels allowing access of electrolyte species to the inner parts of the coating and to subsequent rapid formation of coating material, under high temperatures, associated with increased local current density, and high pressures, associated with volume constraints on oxide growth and gas generation.

Acknowledgements

The authors are grateful to the Engineering and Physical Sciences Research Council (UK) for support of this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.