80
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

The elastic field of general-shape 3-D cracks

&
Pages 4195-4212 | Received 28 Jun 2005, Accepted 08 Sep 2005, Published online: 11 Feb 2011
 

Abstract

We extend here the Bilby-Eshelby approach of 2-D crack representation with dislocation pileups to treat 3-dimensional cracks of general geometry. Cracks of any specified external bounding 3-D contour under general loading conditions are represented by sets of parametric Somigliana loops that satisfy total (interaction, self, and external) force equilibrium. Loop positions are solved by using a time integration scheme till equilibrium is achieved. The local Burgers vector is suitably adjusted to be proportional to the local applied surface traction on the crack. The developed method is computationally advantageous, since accurate crack stress fields are obtained with very few concentric parametric loops that adjust to the external crack shape and the local force conditions. The method is tested against known elasticity solutions for 3-D cracks and found to be convergent with an increase in the number of pileup dislocation loops. The method is applied to the determination of the stress field around a 3-D Griffith crack under general loading and a grain boundary crack before and after branching.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.