703
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Effects of KOH etching on the properties of Ga-polar n-GaN surfaces

, , , , &
Pages 2315-2327 | Received 13 Sep 2005, Published online: 21 Feb 2007
 

Abstract

The effects of a KOH treatment on the properties of n-type GaN surfaces and associated Au/n-GaN contacts have been investigated by X-ray photoelectron spectroscopy, atomic force microscopy, reflection high-energy-electron diffraction, current–voltage and electron-beam-induced current characterization. Ga-polar surfaces grown by molecular beam epitaxy and metal–organic chemical vapour deposition were compared. A decrease in electron barrier height and an increase in non-radiative recombination properties of Au/n-GaN contacts were found with KOH treatment, correlated with an increase of surface Ga vacancies, an increase in surface N–H2 content and a decrease in surface C contamination. A 0.3-eV shift in the Ga3d peak position towards the valence band and a reduction in the dislocation contrast were observed for the case of molecular-beam-epitaxy-grown GaN only, demonstrating that surface Ga vacancies and threading dislocations play only a limited role in defining the resultant metal/GaN contact properties. Accordingly, the surface atomic content and the resulting surface states, following KOH treatment, should be taken into consideration when appraising the electrical properties of n-GaN surfaces and the performance of associated metallic contacts.

Acknowledgements

This work was supported under EPSRC grant GR/M87078 and GR/S25630. We thank J. B. Webb, NRC Ottawa, for supply of the MBE materials. GM would like to acknowledge R. Broom for most useful discussions on the properties of Schottky contacts and R. Dykeman for depositing the Au layers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.