60
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A dissociated dislocation in an ultrathin silicon plate

&
Pages 3077-3088 | Received 23 Dec 2005, Accepted 02 Mar 2006, Published online: 21 Feb 2007
 

Abstract

Simplified explicit expressions are presented to describe the elastic displacement field of a periodic family of misfit dislocations running parallel to the two free surfaces of an elastically isotropic plate. In the situation where the period tends to infinity, the use of these expressions proves to be quite valuable for investigating the change of the separation distance, S, between two partial dislocations as a function of the position of one partial and the orientation of the fault plane. For the two 30° Shockley partials of a dissociated screw dislocation in an ultrathin silicon plate, numerical results indicate that S can change drastically. This property is confirmed in anisotropic elasticity for a dislocation located near the free surface of a semi-infinite crystal. The results emphasize that particular attention should be paid to precise measurement of the local thickness and positions of the partials in weak beam or high resolution transmission electron microscopy experiments.

Acknowledgments

The authors would like to thank the Centre National de la Recherche Scientifique (Paris) and the Direction Générale à la Recherche Scientifique et Technique (Tunis) for constant financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.