78
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of the demixing of yttria-stabilized zirconia in an electric field for different diffusion mechanisms

, , &
Pages 1447-1463 | Received 18 Feb 2006, Accepted 29 May 2006, Published online: 16 Feb 2007
 

Abstract

Steady-state demixing of the cations in yttria-stabilized zirconia in an electric field is analyzed for diffusion via independent vacancies, by vacancy pairs and by vacancy triplets. We analyze two conditions, one (open system) where the vacancies are everywhere close to an internal surface, which allows the Schottky defect reaction to permit the equilibration of the concentration of the vacancies, the other (closed system) where such equilibration is only possible at the external surface. For diffusion via independent vacancies and vacancy pairs, critical values of the ratio of the yttrium to zirconium vacancy exchange frequencies causing yttrium enrichment at the cathode are determined. It is also shown that diffusion via the vacancy-triplet mechanism always leads to yttrium enrichment at the anode end. Using Monte Carlo simulation, we also verify the analysis of the situation where demixing occurs by independent cation vacancies in a closed system.

Acknowledgments

We wish to thank the Australian Research Council (Discovery Project Grants Scheme) for its support of this research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.