437
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

Experimental characterization of the mesoscale dislocation density tensor

, , , , &
Pages 1327-1347 | Received 22 May 2006, Accepted 01 Aug 2006, Published online: 04 Dec 2010
 

Abstract

The dislocation density tensor has been an important variable in the theoretical characterization of dislocations in deformed crystals since its introduction over 5 decades ago. However, the non-destructive, three-dimensional (3D) measurements of lattice rotations and elastic strain needed to determine dislocation density tensors with micron spatial resolution over mesoscopic length scales have until now not been available. We have used 3D X-ray microscopy with sub-micron point-to-point spatial resolution to demonstrate 3D, spatially resolved measurements of the dislocation density tensor in elastically and plastically deformed silicon single crystal plates. Measurements were made of the dislocation density tensor along a line in a ∼35 µm thick silicon plate that was bent (elastically) to a 5.42 mm radius of curvature at room temperature, and in a similar sample deformed plastically by annealing to 700°C under bending stress. We discuss the theoretical background for the dislocation density tensor with respect to lattice rotation and elastic strain, we describe the X-ray microscopy technique used to make non-destructive measurement of local rotations and elastic strains with sub-micron resolution in 3D, and we discuss the analysis procedures for extracting dislocation tensors on mesoscopic length scales.

Acknowledgements

Research sponsored by the Department of Energy, Office of Science, Division of Materials Sciences at ORNL managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725. Work was performed on the XOR/UNI Sector 34 ID beamline at the APS; the operation of the APS is sponsored by the DOE. AE was supported by start up funding at Florida State University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.