253
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Investigating the mechanisms of diamond polishing using Raman spectroscopy

, &
Pages 267-280 | Received 02 May 2006, Accepted 10 Aug 2006, Published online: 01 Dec 2006
 

Abstract

Recent research has shown that a phase transformation of diamond to a different form of carbon is involved when diamonds are polished in the traditional fashion. The question as to how this phase transformation is activated and maintained to produce high wear rates is of great technological interest since it may radically change the way we view the processing of diamond. This paper describes the use of Raman spectroscopy to examine debris produced on the diamond polishing wheel, both during its preparation and during polishing. In addition, polished diamond surfaces were examined for the possible existence of non-diamond surface layers in an attempt to identify material removal mechanisms. Raman spectroscopy proves ideal for these analyses because its relatively high spatial resolution is well suited to the analysis of small wear features and debris particles, and because of the wealth of information it reveals about chemical structure. This level of structural information has been lacking in previous analyses of diamond polishing debris. In addition to the non-diamond carbon found in the wear debris, significant quantities of two iron oxides, magnetite (Fe3O4) and haematite (α-Fe2O3), were also found. An interesting observation was that a transformation from magnetite to haematite could be induced either by using high power laser excitation or by frictional heating during polishing. It is suggested that some of the Raman peaks previously attributed to lonsdaleite might better be explained by the presence of these oxides.

Acknowledgements

We would like to thank Mr P. Tampkins of Renishaw for experimental help. We are grateful to Dr G. Cressey of the Natural History Museum, London, for performing the micro-powder diffractometry and to Prof J. E. Field for his continued interest in this area of research and for his comments on the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.