430
Views
84
CrossRef citations to date
0
Altmetric
Original Articles

Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure – Part 2: crystal plasticity

, , &
Pages 1425-1446 | Received 07 Apr 2006, Accepted 25 Jul 2006, Published online: 04 Dec 2010
 

Abstract

The effect of three-dimensional (3D) grain morphology on the deformation at a free surface in polycrystalline aggregates is investigated by means of a large-scale finite element and statistical approach. For a given two-dimensional surface at z = 0 containing 39 grains with given crystal orientations, eight 3D random polycrystalline aggregates are constructed having different 3D grain shapes and orientations except at z = 0, based on an original 3D image analysis procedure. They are subjected to overall tensile loading conditions. The continuum crystal plasticity framework is adopted and the resulting plastic strain fields at the free surface z = 0 are analyzed. Ensemble average and variance maps of the plastic strain field at the observed free surface are computed. In the case of elastoplastic copper grains, fluctuations ranging between 2% and 80% are found in the equivalent plastic slip level at a given material point of the observed surface from one realization of the microstructure to another. The obtained fields are compared to the prediction based on the associated columnar grain microstructure, often used in the literature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.