1,010
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Effects of grain size on dislocation organization and internal stresses developed under tensile loading in fcc metals

&
Pages 989-1018 | Received 05 Apr 2006, Accepted 07 Sep 2006, Published online: 04 Jul 2007
 

Abstract

The relationship between deformation and dislocation properties has been studied for pure polycrystalline nickel and austenitic stainless steel AISI 316L in stage III. Special care was taken to study statistically the effects of the grain size and grain orientation on dislocation densities and distribution. It is shown that the nature of dislocation cells depends on grain size and crystallographic orientation. The dimensional parameters, which depend on grain size, i.e. the inter-boundary spacing (λ) and boundary thickness (e), define three domains of crystallographic orientation and depend on the grain size. Scaling hypotheses reveal two physical mechanisms which, at this level of plastic strain, are correlated to a specific value of the noise, associated with distribution functions. Similarities between structural parameters and dislocation densities in each phase (walls and inter-walls spacing) are identified and discussed in terms of kinetic equations describing dislocation density evolution and fluctuations of certain physical parameters. This similarity provides physical signification of the scaling distribution obtained on λ and e in terms of a stochastic approach to dislocation distribution. The origin of Hall–Petch behaviour observed at large strain is interpreted in terms of an interaction between inter- and intra-granular long-range internal stresses, which depends on grain size. We conclude that, at high strain, the Hall–Petch phenomenological relationship is a consequence of plastic strain history and strain gradient in grains. From this last point, a length scale arises naturally, which depends on stacking fault energy.

Acknowledgements

The authors thank the Centre Commun d'Analyse, Université de La Rochelle for electron microscopy facilities and the Roberval Laboratory, Université de Technologie de Compiègne for TEM and fatigue testing facilities. We are grateful to H. Mughrabi for comments on the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.