224
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of dislocation-induced martensitic transformation in anisotropic crystals

, &
Pages 1545-1563 | Received 27 Jun 2006, Accepted 03 Oct 2006, Published online: 16 Feb 2007
 

Abstract

The structural transformation caused by dislocation-induced heterogeneous nucleation in the fcc → bcc martensitic transformation in elastically anisotropic crystals is investigated by using the phase field microelasticity model. The three-dimensional microstructure of the dislocation-induced martensitic embryos is obtained. It is found that the embryos are not single-domain particles as is usually assumed but rather a complex self-organized assemblage of stress-accommodating twin-related microdomains. Sessile metastable martensitic embryos around the dislocation loops form in the prototype Fe–Ni alloy system above the temperatures of the martensitic transformation. A possibility that the presence of these pre-existing embryos could be responsible, at least, for a part of the elastic modulus softening with the temperature decrease observed in many martensitic systems is discussed. The effects of elastic anisotropy, the “chemical” energy barrier and structural anisotropy of the Landau free energy on the formation and growth of martensitic embryos are investigated. The assumptions of elastic isotropy and a choice of the anisotropic term in Landau polynomial do not significantly affect the microstructure of martensitic embryos but may appreciably change the undercooling that is necessary to eliminate the total nucleation barrier and start the athermal martensitic transformation.

Acknowledgements

The financial supports of the NSF grant DMR-0242619 for AGK and WZ and the startup fund from Texas A&M University for YMJ are gratefully acknowledged. This research was supported in part by the San Diego Supercomputer Center.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.