299
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

On the interaction between a vacancy and self-interstitial atom clusters in metals

, , , &
Pages 3501-3517 | Received 22 Nov 2006, Accepted 08 Mar 2007, Published online: 21 Jun 2007
 

Abstract

Atomic-scale computer simulation is used to study the interaction between a vacancy and a cluster of self-interstitial atoms in metals with hcp, fcc and bcc crystal structure: α-zirconium, copper and α-iron. Effects of cluster size, atomic structure, dislocation nature of the cluster side and temperature are investigated. A vacancy can recombine with any interstitial in small clusters and this does not affect cluster mobility. With increasing sizes clusters develop dislocation character and their interaction with vacancies depends on whether the cluster sides dissociate into partial dislocations. A vacancy recombines only on undissociated sides and corners created with undissociated segments. Vacancies inside the cluster perimeter do not recombine but restrict cluster mobility. Temperature enhances recombination by either increasing the number of recombination sites or assisting vacancy diffusion towards such sites. The results are discussed with relevance to differences in irradiation microstructure evolution of bcc, fcc and hcp metals and higher level theoretical modelling techniques.

Acknowledgments

The research was supported by Spanish MCYT FIS2006-12436-C02-02 and the integrated project FI6O-CT-2003-508840 (‘PERFECT’) from the European Commission; and partly by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Part of the computing was carried out in CESCA (http://www.cesca.es).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.