344
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Fatigue in precipitation hardened materials: a three-dimensional discrete dislocation dynamics modelling of the early cycles

, &
Pages 3657-3669 | Received 03 Jan 2007, Accepted 10 Apr 2007, Published online: 22 Oct 2010
 

Abstract

Three-dimensional dislocation dynamics (DD) fatigue simulations in precipitation hardened metals is a major challenge in terms of numerical development. Several precipitate configurations have been investigated with an original treatment of precipitate–dislocation interactions and a parallelized DD code. In grains containing single-sized shearable particles (r p = 160 nm), strain is localized in clear bands where the precipitates are totally sheared-off. The fatigue behaviour involves an initial hardening followed by severe cyclic softening and significant surface slip irreversibility. In the presence of large single-sized particles (r p = 400 nm), the persistent slip band (PSB) structure is accompanied by highly reversible surface displacements. Slip dispersion originates from Orowan loops that have little effect on the mechanical response. The mechanical behaviour of a bimodal distribution is intermediate between the two above cases with the above microstructural features coexisting within the same grain. Unlike in the monomodal large-particle case, where all the particles retain their initial strength, some of the large particles of the bimodal distribution undergo a significant strength reduction.

Acknowledgements

The authors acknowledge the French ministry of research for the financial support provided through the project FAMICRO (reference number 01K0124--01K0125).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.