177
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A new model of solution hardening in fcc metals based on the interaction with plural obstacles

Pages 4027-4046 | Received 16 Jan 2007, Accepted 28 May 2007, Published online: 14 Aug 2007
 

Abstract

A new model of solution hardening in fcc metals assumes that dislocation motion is controlled by a thermal activation process. In the model, the interaction of a dislocation with plural solute atoms is taken into account in a single activation event. The actual number of solute atoms which are involved in an activation event is determined by minimizing the activation energy. The model predicts a temperature dependence for the flow stress that agrees reasonably well with experimental results. Especially, it predicts the appearance of an inverse temperature dependence of the flow stress in the low-temperature region. Thus, the anomalous lowering of the flow stress at low temperatures, observed in some dilute alloys, can be explained solely by the dislocation–solute atom interaction. This is to be compared with the conventional explanation, in which another cause, the so-called inertial effect, was invoked. Another feature of the new model is that it provides a simple explanation for the occurrence of the stress equivalence phenomenon.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.