121
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Magnetism and electronic structure of the intermetallic compound Ce5CuBi3

, , &
Pages 5089-5107 | Received 24 May 2007, Accepted 31 Jul 2007, Published online: 09 Oct 2007
 

Abstract

We have studied the electronic structure as well as magnetic, electronic transport and thermodynamic properties of the intermetallic compound Ce5CuBi3. It was found that Ce5CuBi3 undergoes three successive phase transitions at 25 K, 13.7 K and 3.5 K. We attribute the multiple magnetic phase transition to be associated with the two non-equivalent magnetic sublattices of the magnetic Ce ions. The investigated compound is characterized by an enhanced ratio Cp /T at 2 K, which may be interpreted as being due to the nearness of the 4f-level to the Fermi level and some contribution of magnon excitation. The core-level photoemission spectra indicate that Ce ions in Ce5CuBi3 are very close to trivalent which is consistent with the magnetic susceptibility data. The calculated band structures using the scalar-relativistic linear muffin-tin orbital method in the atomic sphere approximation and the all-electron full potential linear augmented plane wave plus local orbitals method have been performed for the non-magnetic ground state and as well as for collinear ferromagnetic and ferrimagnetic spin alignments. The largest stabilization energy is found in the case of a ferromagnetic structure. The calculated moments on the two sites of the Ce atoms are in agreement with the experimental value (0.93 μ B /Ce). The calculations predict that the studied compound has a pseudogap in the DOS curve. Analysis of the partial DOS suggests some differences in hybridization strengths between the Ce-Bi and Ce-Cu orbitals.

Acknowledgments

VHT wishes to acknowledge financial support from the Ministry of Science and Higher Education in Poland with grant No N202 082 31/0449. Two of us (MG and A Ś) acknowledge the support of the Ministry of Science and Higher Education through grant No 1 P03B 052 28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.