58
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the microstructure and optical properties of hydrogenated polymorphous silicon films prepared with pure silane

, , , &
Pages 5539-5549 | Received 07 May 2007, Accepted 04 Sep 2007, Published online: 12 Nov 2007
 

Abstract

The dependences of microstructure and optical properties of hydrogenated polymorphous silicon (pm-Si:H) films on total gas pressure were studied. Instead of using high diluted silane in H2, pure silane was used as the source gas. The films were grown by the radio-frequency plasma-enhanced chemical vapour deposition method. Fourier-transform infrared spectrometry was used to characterize the presence of Si m H n clusters in pm-Si:H film deposited on KBr substrate. Atomic force microscopy (AFM) analysis characterized the morphology of the pm-Si:H films and X-ray diffraction at grazing incidence angle (XRDGI) microstructure analysis also confirmed the existence of Si m H n nanocrystalline clusters in pm-Si:H. The thickness and optical constants of the films were measured by spectra ellipsometry as well as scanning electron microscopy. Derived using the Tauc relation, the dependence of optical bandgap, Eg , and coefficient, B, on the pressure during deposition process is discussed. The influence of inter-electrode distance on growth rate and surface smooth was analyzed using AFM.

Acknowledgement

This work was partially supported by the New Century Education Talent of China Ministry of Education through grant No. NCET-04-0896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.