94
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Erosion damage in diamond coatings by high velocity sand impacts

&
Pages 5719-5740 | Received 10 Jul 2007, Accepted 25 Sep 2007, Published online: 30 Nov 2007
 

Abstract

For a diamond-coated component, the shear stresses at the coating–substrate interface, generated by solid particle impingement, are known to affect interfacial integrity. If these stresses are of sufficient magnitude, coating-debonding caused by interfacial crack propagation can be initiated, which can later lead to catastrophic failure of the coating. This paper describes a set of experiments conducted on CVD diamond coatings at a constant particle impingement velocity (250 m/s), using sieved silica sand varying in diameter from 125 to 500 µm. The objective of this work was to examine the influence of the stress field on the integrity of the coating by varying the depth at which the maximum shear stress occurred. Detailed studies of the coating failure time with respect to the normalized depth of maximum shear stress show that particle impacts generating a maximum shear stress at, or close to, the coating–substrate interface results in rapid debonding of the coating. Coatings thick enough to contain the maximum shear stress within the coating and away from the interface exhibit the longest life when subjected to solid particle impacts. The results are also compared to other erosion studies and the differences between them are explained.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.