648
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Precipitation and solute distribution in an interrupted-aged Al–Mg–Si–Cu alloy

, &
Pages 373-390 | Received 28 Aug 2007, Accepted 01 Dec 2007, Published online: 13 Feb 2008
 

Abstract

Quantitative analysis of the precipitate species and solute distribution was carried out on Al–Mg–Si–Cu alloy 6061 aged to peak hardness using a conventional T6 heat treatment and the so-called T6I6 heat treatments. In this latter, a dwell period at reduced temperature (65°C) is introduced into the T6 ageing cycle (at 177°C or 150°C) which modifies the microstructure and results in the simultaneous improvement of both tensile properties and fracture toughness. Analysis of three-dimensional atom probe data reveals that the superior mechanical properties of the T6I6/177 temper are achieved by a combined effect of a greater consumption of solute atoms by precipitates, an increased number density of fine precipitates and the presence of greater fractions of the effective strengthening precipitates in the final microstructure. Three types of precipitates were found to be characteristic of the peak aged conditions: β′′ precipitates, Guinier–Preston zones and Mg–Si(–Cu) co-clusters. The composition of the strengthening precipitates was found to vary over a wide range for the different heat treatment schedules, corresponding to a variation in the number density of stable nuclei, without any accompanying change in their morphology. All precipitates were found to contain substantial quantities of aluminium. The results also indicate that the strengthening precipitates are preferentially formed from Si-rich nuclei that contain Cu atoms, as opposed to Cu-free nuclei.

Acknowledgments

This work was supported by a University of New South Wales UPRS postgraduate scholarship, a CSIRO postgraduate scholarship and a NIMS Junior Fellowship. The authors would like to thank NIMS and NANO-MNRF for providing access to 3DAP facilities through a NANO-NIMS student exchange scheme, and Comalco for providing material. The authors would also like to thank Professor Ian Polmear and Dr Cameron Davidson for helpful comments and input.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.