279
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

The gauge theory of dislocations: conservation and balance laws

&
Pages 1673-1699 | Received 20 Mar 2008, Accepted 04 Jun 2008, Published online: 28 Jul 2008
 

Abstract

We derive conservation and balance laws for the translational gauge theory of dislocations by applying Noether's theorem. We present an improved translational gauge theory of dislocations including the dislocation density tensor and the dislocation current tensor. The invariance of the variational principle under the continuous group of transformations is studied. Through Lie's infinitesimal invariance criterion we obtain conserved translational and rotational currents for the total Lagrangian made up of an elastic and dislocation part. We calculate the broken scaling current. Looking only on one part of the whole system, the conservation laws are changed into balance laws. Because of the lack of translational, rotational and dilatation invariance for each part, a configurational force, moment and power appears. The corresponding J , L and M integrals are obtained. Only isotropic and homogeneous materials are considered and we restrict ourselves to a linear theory. We choose constitutive laws for the most general linear form of material isotropy. Also we give the conservation and balance laws corresponding to the gauge symmetry and the addition of solutions. From the addition of solutions we derive a reciprocity theorem for the gauge theory of dislocations. Also, we derive the conservation laws for stress-free states of dislocations.

Acknowledgements

The authors have been supported by an Emmy Noether grant of the Deutsche Forschungsgemeinschaft (Grant No. La1974/1-2).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.