219
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Fatigue crack growth from a cracked elastic particle into a ductile matrix

, , , , &
Pages 3565-3583 | Received 14 Jan 2008, Accepted 29 Jun 2008, Published online: 04 Dec 2010
 

Abstract

The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the elastic particle and (ii) elastic modulus mismatch between the reinforcement and matrix phases. Due to the small sizes of the particles and cracks, plasticity in the ductile crystal is modelled using a 2D discrete dislocation plasticity framework wherein dislocations are modelled as line singularities in an isotropic elastic isotropic material. Crack growth is modelled using a cohesive surface. Calculations reveal a threshold for fatigue crack growth and a transition to Paris power-law behavior, both depending on the existence of the elastic particle and the modulus mismatch. For a matched-modulus particle, the threshold is reduced by 25% and is attributed to slip blockage by the particle. For a high-modulus particle, the threshold is reduced by 50% due to the enhanced stress intensity factor caused by elastic mismatch and due to some slip blockage. However, crack growth halts after some amount of crack advance due to the decreasing effect of elastic mismatch and slip blocking as the crack moves away from the particle. The broad results here are compared with experimental observations in the literature, and are consistent in a number of respects. These results show that fatigue crack growth from micron-scale particles is strongly influenced by plasticity size effects, elastic mismatch, and particle constraints on plastic flow, all of which are captured within a discrete dislocation plasticity framework.

Acknowledgements

The authors gratefully acknowledge support of this work by Northrop–Grumman Corporation and by the National Science Foundation through the Materials Research Science and Engineering Center on Nano- and Micromechanics of Materials at Brown University, grant no. DMR-0520651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.