89
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Lowest energy structures of self-interstitial atom clusters in α-iron from a combination of Langevin molecular dynamics and the basin-hopping technique

&
Pages 375-388 | Received 05 Aug 2008, Accepted 26 Nov 2008, Published online: 14 Feb 2009
 

Abstract

A combination of simulated annealing with Langevin molecular dynamics and the basin-hopping with occasional jumping (BHOJ) technique was used to systematically determine the most stable configurations of self-interstitial atom (SIA) clusters I n (n = 1–38) in α-iron. In addition to the original BHOJ technique, we introduced an additional long jumping process in which a randomly selected less-bounded atom is moved to a neighbouring site of another SIA in the cluster to enhance the probability of locating the global minimum structure. With the obtained putative lowest energy structures, the binding energies as a function of cluster size were estimated. We also determined the sizes of particular stable clusters based on their geometrical symmetry. Furthermore, the values were extrapolated based on accurately determined formation energies, and are available for immediate use in kinetic Monte Carlo or rate theory models.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.