159
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Do moving basal dislocations in sapphire (α-Al2O3) have non-stoichiometric cores?

, &
Pages 489-499 | Received 18 Sep 2008, Accepted 05 Dec 2008, Published online: 14 Feb 2009
 

Abstract

An idealized crystal structure for sapphire (α-Al2O3) (perfect oxygen hcp packing, flat cation planes perpendicular to [0 0 0 1]) has been used by Kronberg [Acta. Metall. 5 (1957)] and many others over the past 50 years to describe basal slip and basal twinning at the atomic level. However, it was recognized a decade ago [Bilde-Sørensen et al., Acta Mater. 44 2145 (1996); Pirouz et al., Acta Mater. 44 2153 (1996)] that the actual structure of sapphire allows much simpler atomic mechanisms to be postulated for basal slip and basal twinning. These models are supported by convincing arguments derived from chemical and structural considerations.

Recently, a climb-dissociated basal dislocation in the boundary of a manufactured bicrystal was observed by atomic resolution transmission electron microscopy [Shibata et al., Science 316 82 (2007)]. The images were interpreted as indicating non-stoichiometric charged dislocation cores and it was inferred that, during dislocation motion on the basal plane, the basal dislocations had to move according to a variant of Kronberg's mechanism. This conclusion is difficult to reconcile, with (i) the models based on the actual structure [Bilde-Sørensen et al., Acta Mater. 44 2145 (1996); Pirouz et al., Acta Mater. 44 2153 (1996)], (ii) weak beam TEM images [Lagerlöf et al., in Proceedings of the Electron Microscopy Society of America, edited by G.W. Baily (San Francisco Press, 1982), p.554], which contradict important implications of this variant of Kronberg's model, (iii) implications concerning dislocation motion in ionic materials, and (iv) the possibility that interface dislocations can be subject to entirely different constraints than apply to gliding lattice dislocations.

Acknowledgements

We thank our colleagues, Pirouz Pirouz, Frank Ernst and Yiuchi Ikuhara for useful discussions.

Notes

Notes

1. The direction [uvi0⟩ represents the direction [uvi0] and the two equivalent directions related to it by the three-fold symmetry of sapphire about [0 0 0 1] Citation10.

2. Reaction (2) has never been observed, presumably due to the very high energy stacking fault that would be created Citation15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.