85
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of non-steady-state distribution functions for grain growth and coarsening

, &
Pages 1425-1438 | Received 28 Jan 2009, Accepted 22 Apr 2009, Published online: 11 Oct 2010
 

Abstract

The description of non-steady-state grain growth or precipitate coarsening using object radius distribution functions with multiple time-dependent parameters (distribution concept) appears promising. The present paper deals with the simplest case of non-steady-state distribution functions with two parameters–the first one scaling the object radius, the second determining the shape of the distribution function. The main question concerns the physical basis behind the evolution of these two parameters. The principle of maximum dissipation has proven to be a suitable tool to derive the evolution equations. Semi-analytical solutions for the evolving parameters of arbitrary two-parameter distribution functions can be developed. As examples, Kirkaldy- and Weibull-type distribution functions are investigated. It is shown that the parameters of the Kirkaldy distribution function are not independent and, thus, the general non-steady-state analysis fails. For a Weibull-type distribution function, nearly exact and simple analytical expressions for both parameters are presented and discussed for the grain growth and coarsening cases.

Acknowledgements

Financial support by Materials Center Leoben Forschung GmbH (project SP19) and by Research plan of Institute of Physics of Materials (project CEZ:AV0Z20410507) is gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.