1,156
Views
104
CrossRef citations to date
0
Altmetric
Original Articles

Deformation of micron-sized aluminium bi-crystal pillars

&
Pages 3013-3026 | Received 11 May 2009, Accepted 03 Jul 2009, Published online: 26 Oct 2009
 

Abstract

The deformation of micron-sized single-crystals is jumpy and stochastic, and this may pose potential formability and reliability problems if components for future micro-machines are to be made from small metal volumes. In this work, micron-sized bi-crystal pillars were fabricated by focussed ion-beam milling from grain-boundary regions in coarse-grained polycrystalline aluminium. Each bi-crystal pillar contained a grain boundary intersecting its top surface, and was subjected to compression using a flat-ended nanoindenter tip. Their deformation was found to have smaller strain bursts, fewer periods of strain hardening at elastic-like rates, as well as greater work-hardening rate and flow stress, than single-crystal pillars of similar sizes. Transmission electron microscopy revealed severe dislocation accumulation in the deformed bi-crystal pillars, whereas the residual dislocation density remained low in single-crystal micro-pillars of similar dimensions after deformation to comparable strains. The results suggest that a grain boundary inside a micro-specimen can trap dislocations inside the specimen, leading to a significant rise in the strain-hardening rate as well as to smoother deformation.

Acknowledgements

We thank the Electron Microscope Unit of HKU for their assistance. The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administration Region, P.R. China (Project No. HKU7156/08E).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.