244
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Phase transitions in natural zeolites and the importance of PH2O

&
Pages 2425-2441 | Received 11 Aug 2009, Accepted 23 Dec 2009, Published online: 27 May 2010
 

Abstract

Zeolites are low-density silicates with structures consisting of a negatively charged aluminosilicate framework that creates a system of uniform linked channels and cavities. Variable amounts of extraframework cations and H2O molecules occupy the channel system, and the H2O molecules are very responsive to changes in temperature, pressure and partial pressure of water (i.e. P H2O or relative humidity, RH). As the H2O molecules occupy much of the volume of the extraframework sites, a gain or loss of H2O molecules has a direct effect on the extraframework cations and an indirect effect on the framework. Temperature or RH-induced changes can result in both first- and second-order phase transitions, the latter resulting from continuous, minor changes in hydration state and cation position, and the former resulting from discrete changes in hydration state, which can cause similar shifts in cation position. Second-order transitions are typically reversible with no hysteresis, but first-order transitions exhibit considerable hysteresis. As H2O molecules are crucial in determining zeolite behavior, it is important that any study of thermal behavior involve control of not only temperature but also of relative humidity. Stabilization of a zeolite's hydrated phase to higher temperatures under higher RH conditions can cause some phase transitions to be missed, as is the case with natrolite.

Acknowledgements

This manuscript was improved by comments from R. Rinaldi and an anonymous reviewer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.