296
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Application of the Debye function to systems of crystallites

, , &
Pages 3891-3905 | Received 27 Nov 2009, Accepted 07 Jun 2010, Published online: 03 Aug 2010
 

Abstract

The Debye function was used to simulate the X-ray powder diffraction patterns from loose-packed systems of nanocrystals. The resulting patterns contain local atomic lattice information in the wide-angle region as well as long range, inter-particle structure features in the small-angle region. Both monodisperse and polydisperse systems of particles were considered in this study. The minimum number of particles necessary in the system to generate an accurate pattern is shown to increase with the system polydispersity. Diffraction patterns from a powder of uniformly oriented particles were simulated to show that the observation of coherency in bulk nanocrystalline materials is unlikely. Furthermore, the accuracy of the Williamson–Hall plot was studied by analyzing the simulated patterns. Whereas this study was focused on systems of loose particles, the results also might suggest some guidelines and considerations when diffraction patterns are simulated from atomistic models of nanocrystalline bulk materials.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.