129
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Negative refraction and localized states of a classical wave in high-symmetry quasicrystals

, , , , &
Pages 2811-2819 | Received 25 Jun 2010, Accepted 27 Jul 2010, Published online: 21 Sep 2010
 

Abstract

Recently, negative refraction of electromagnetic waves in periodic photonic crystals has been demonstrated experimentally and sub-wavelength images observed. A theoretical and experimental investigation is reported of the electromagnetic wave transport in high-symmetry photonic quasicrystals (QCs). It is shown that negative refraction can appear in these transparent quasicrystalline photonic structures. It is interesting that highly symmetric two-dimensional photonic QCs possess a universal feature for non-near-field focus of two kinds of polarized waves (S wave and P wave). That is, the non-near-field focus for two kinds of polarized waves can be realized by using flat lenses, which consist of some high-symmetric two-dimensional photonic QCs with the same structures and parameters. In addition, some two-dimensional and three-dimensional localized states in defect-free photonic QCs have been found. It is evident that these unusual localized states can be explored by means of electron energy loss spectroscopy.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 10825416) and the National Key Basic Research Special Foundation of China under Grant 2007CB613205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.