315
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Morphology and orientation of iron oxide precipitates in epitaxial BiFeO3 thin films grown under two non-optimized oxygen pressures

, , , , &
Pages 4551-4567 | Received 01 Jun 2010, Accepted 09 Aug 2010, Published online: 20 Sep 2010
 

Abstract

Microstructures of multiferroic BiFeO3 thin films epitaxially grown on SrRuO3-buffered SrTiO3 (001) substrates by laser molecular-beam epitaxy under two non-optimized oxygen pressures were characterized by means of transmission electron microscopy. The results showed that the films grown under oxygen pressures of 1 Pa and 0.3 Pa contain a secondary phase embedded in the BiFeO3 matrix. High-angle annular dark-field imaging, elemental mapping and composition analysis in combination with selected area electron diffraction revealed that the parasitic phase is mainly antiferromagnetic α-Fe2O3. The α-Fe2O3 particles are semi-coherently embedded in the BiFeO3 films, as confirmed by high-resolution transmission electron microscopy. In addition to the α-Fe2O3 phase, ferromagnetic Fe3O4 precipitates were found in the BiFeO3 films grown under 0.3 Pa and shown to accumulate in areas near the film/substrate interfaces. In our heteroepitaxy systems, very low density misfit dislocations were observed at the interfaces between the BiFeO3 and SrRuO3 layers implying that their misfit strains may be relieved by the formation of the secondary phases. Using X-ray photoelectron spectroscopy it was found that Fe exists in the +3 oxidation state in these films. The possible formation mechanisms of the secondary phases are discussed in terms of film growth conditions.

Acknowledgements

This work was supported by the National Basic Research Program of China (2009CB623705), and the National Natural Science Foundation of China (No. 50871115 and No. 10874226). We would like to thank Ms. Bin Zhang for the help with XPS measurement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.